 • Sunday October 17,2021

# Hooke's law

We explain what Hooke's law is, its formula and its applications in engineering and architecture. In addition, how elasticity is calculated.

1. ### What is Hooke's law?

Hooke's Law of Elasticity, or simply Hooke's Law, is the physical principle around the elastic behavior of solids . It was formulated in 1660 by British scientist Robert Hooke, a contemporary of the famous Isaac Newton.

The theoretical precept of this law is that the displacement or deformation suffered by an object subjected to a force will be directly proportional to the deforming force or the load. That is to say, that with greater force, greater deformation or displacement, or as Hooke himself formulated in Latin: Ut tensed sic vis (as with the extension, so the force ).

Hooke's Law is extremely important in various fields, such as in physics and the study of elastic springs (its most frequent demonstration). It is a fundamental precept for engineering and architecture, construction and design, since it allows to anticipate the way in which a prolonged force or a weight will alter the dimensions of objects over time.

It is said that this law was published by Hooke in the form of a mysterious anagram: ceiiinosssttuv, from which the statement in Latin of his law can be reconstructed, because he was afraid that someone might illegally take possession of his discovery. A couple of years later, however, he made his findings public.

It can serve you: General properties of matter

1. ### Hooke's Law Formula

The basic formula of Hooke's law is as follows:

F = -kx

Where:

• F is the deforming force
• x is the length of compression or elongation
• k is the constant of proportionality baptized as a spring constant, usually expressed in Newtons over meters (N / m).

Two measurements are necessary for the calculation of x: the initial length (L 0 ) and the final length (L f ), for the calculation of L or the length variation, that is, the deformation. Hence the law can also be:

F = -k. L

1. ### Hooke's Law Applications Hooke's law allows predicting the effect of weight on building materials.

Hooke's law is extremely useful in all those fields where full knowledge of the elastic capacity of materials is required. Engineering, architecture and construction are the disciplines in which it is used most frequently.

For example, this law allows to predict the effect that the weight of cars will have on a bridge and on the materials (such as metal) from which it is made. It also allows you to calculate the behavior of a bellows or a set of springs, within a specific machine or industrial device.

The best known application of Hooke's law is in the development of dynamometers : devices that allow scalar force measurement, consisting of a spring and a scale.

1. ### Hooke Law and Elasticity

The application of Hooke's law for the calculation of elasticity varies whether it is springs, or elastic solids.

To calculate the spring elasticity, the “spring equation” is applied, which is the most general way of formulating the Hooke's law formula (the same one we offered above: F = -k.ΔL). The difference is that k will be the spring's elasticity constant, depending on the length of the spring and its constitution.

Among other things, this allows calculating the angular frequency of oscillation of the spring (ω), using the mass of the load that causes it to stretch (m). For this we will apply the following formula:

ω = √ k / m

On the other hand, to calculate the elasticity of elastic solids, the law of springs should be generalized, since the distribution of tension in their bodies is much more complicated than a bellows.

To do this, Lamé-Hooke equations are used, which have specific formulas for each solid according to their specific form: one-dimensional, three-dimensional isotropic or three-dimensional orthotrope. But these are issues that require a much more complex and technical elaboration yet.

Continue with: Thermodynamics

#### Memory

We explain what memory is and the types of memory related to time. In addition, what is sensory memory and its importance. Memory allows us to recognize and store feelings, ideas and images, among others. What is Memory? The term memory comes from the Latin memory , and is understood as the ability or ability to retain and remember information from the past

#### OSI model

We explain to you what the OSI Model is used in computer networks, and how it works. In addition, what it is for and what its layers are. The OSI model allows communication between different computer networks. What is the OSI model? The OSI Model (the acronym in English: Open Systems Interconnection , that is, Interconnection of Open Systems ), is a reference model for the communication protocols of the computer networks or computer networks

#### Cell Nucleus

We explain what is the cell nucleus and the main functions of this organelle. In addition, how each of its parts are composed. The cell nucleus preserves the genetic material and makes it work when necessary. What is the cell nucleus? It is known as a cell nucleus a membranous organelle that is found inside the eukaryotic cells exclusively, and that contains most of the genetic material of the cell, organized into macromolecules of DNA called chromosomes, inside which are the genes