• Saturday September 19,2020

Mechanical Energy

We explain to you what the mechanical energy is and how this energy can be classified. In addition, examples and potential and kinetic mechanical energy.

The mechanical energy involves both the kinetic, elastic and potential energy of an object.
  1. What is the mechanical energy?

We understand by mechanical energy that a body or system obtains at the root of the speed of its movement or its specific position, and that it is capable of producing a mechanical work. In general, the mechanical energy involves both kinetic energy, elastic energy and the potential energy of an object .

Mechanical energy is conserved in conservative fields and in which they form particles of purely mechanical action, thus remaining constant over time., according to the following formulation:

Emec = Ec + Ep + Ee = cte.

Where is the kinetic energy of the system, your energy gravitational potential and energy is your potential elastic energy? .

This does not happen in systems of charged particles of movement (since the mechanical energy is transformed into electromagnetic), or in thermodynamic systems that undergo state changes (they convert it into energy at rmica) or in the mechanics of continuous dissipative media (in which the energy dissipates due to deformations and heat generation).

Mechanical energy is often used to perform specific jobs or convert it to other forms of energy, such as hydraulic energy, which takes advantage of the potential energy of the falling water; the energy, which takes advantage of the kinetic energy of the wind, or the tidal energy, which takes advantage of the kinetic energy of the tides.

See also: Elasticity.

  1. Types of mechanical energy

Kinetic energy has to do with the speed and displacement of objects.

There are two types of mechanical energy, as seen. These are:

  • Kinetic energy . That which is derived from the movement of objects or systems, and that has to do with its speed and its displacement. For example, a moving ball.
  • Potential energy . That which has to do with the position or shape of the objects or systems, on which a work capacity depends, and which in turn can be of two types:
    • Gravitational potential energy . That which is due to the action of gravity on bodies, as is the case with an object that falls from a height.
    • Elastic potential energy It has to do with the constitution and shape of the material of the object, which tends to recover its original form after having been subjected to forces that deform it, as is the case of a metal spring.
  1. Examples of mechanical energy

Some possible examples of mechanical energy in its different forms are the following:

  • A roller coaster cart . At its highest point of ascent, the cart will have accumulated enough gravitational potential energy (due to the height) to fall freely a second later and convert it all into kinetic energy (due to movement) and reach vertigo speeds.
  • A windmill The kinetic energy of the wind gives a thrust that the blades of the mill catch and turn into mechanical work: spin the gear that will grind, lower, the grains or the farmer's wheat.
  • A pendulum The classic example of how the gravitational potential energy of weight is converted into kinetic energy to make it move along its path, conserving total mechanical energy.
  • A trampoline The swimmer who jumps into a diving board uses his weight (gravitational potential) to deform the trampoline down (elastic potential) and he, when recovering his shape, pushes him up increasing his height (more gravitational potential) than immediately afterwards converts into kinetic energy during free fall into the water.
  1. Kinetic and potential mechanical energy

As already said, mechanical energy can be divided into two forms: kinetics (movement) and potential (form or position) .

The first is calculable using the simple formula of Ec = ½ m. v2 and its unit of measurement in the International System will be the Joules (J).

Instead, the potential energy is about the amount of energy stored in the system, due to its particular configuration or its positioning with respect to a gravitational or electromagnetic field, as the case may be. This energy is capable of becoming other forms of energy, such as kinetics itself.

Interesting Articles

Scheme

Scheme

We explain what a scheme is and what it is for. In addition, how a scheme is developed and what types of schemes exist. Schemes allow us to organize ideas and concepts. What is a scheme? A scheme is a way to analyze, mentalize and organize all the contents present in a text . A scheme is a graphic expression of the underline and the summary of a text after its reading

Effective Communication

Effective Communication

We explain to you what effective communication is and what its elements are. In addition, why it is so important and some examples. It is very important that the issuer knows clearly what he wants to transmit. What is effective communication? Effective communication is one in which the sender and the receiver encode a message in equivalent form

Efficiency, Efficiency and Productivity

Efficiency, Efficiency and Productivity

We explain what the effectiveness, efficiency and productivity are, how they differ and what are the indicators of each. Efficiency, efficiency and productivity are three different but related concepts. What are effectiveness, efficiency and productivity? Efficiency, efficiency and productivity are three terms that are closely related to each other and that are widely used within the business environment , especially in the management areas

Poem

Poem

We explain to you what a poem is and what its differences are with poetry. In addition, the parts that compose it and some examples. Poems books are called poems and may consist of anthologies. What is a poem? A poem is a literary composition of the genre of the lyric , usually of short extension, consisting of the subjective description of an emotional, existential state or of some experience

Abiotic Factors

Abiotic Factors

We explain to you what abiotic factors, both physical and chemical, are in an ecosystem. Difference with biotics, examples. Soils are part of the abiotic components of an ecosystem. What are abiotic factors? Abiotic factors are all those elements of a physical or chemical nature that intervene in the characterization of a particular biotope or ecosystem

Predator and Prey

Predator and Prey

We explain to you what are predators and prey, what are the differences between predator and predator and examples of predatory animals. The predator hunts the prey to feed on it and thus obtain energy. What are predators and prey? Predation is a key system in the life cycle . It is a mechanism of transmission of carbon and energy, from the simplest forms of life to the most complex, also exerting a pressure on the known species as a natural selection, which is no more than the competition to survive and reproduce, and is one of the most effective engines for evolution