• Tuesday July 7,2020

Genetic Code

We explain to you what the genetic code is, its function, composition, origin and other characteristics. In addition, how was his discovery.

RNA is responsible for using the DNA code to synthesize proteins.
  1. What is the genetic code?

The genetic code is the timely ordering of nucleotides in the sequence that makes up the DNA . It is also the set of rules from which said sequence is translated by the RNA into a sequence of amino acids, to compose a protein. In other words , protein synthesis depends on this code .

All living beings have a genetic code that organizes their DNA and RNA. Despite the obvious differences between the different realms of life, the genetic content turns out to be similar in large proportions, which suggests that all life must have had a common origin. Tiny variations in the genetic code can give rise to a different species .

The sequence of the genetic code comprises combinations of three nucleotides, each called a code and responsible for synthesizing a specific amino acid (polypeptide).

These nucleiids come from four different types of nitrogen bases: adenine (A), thymine (T), guanine (G) and cytosine (C) in the DNA, and adenine (A), uracil (U), guanine ( G) and cytosine (C) in RNA.

In this way a chain of up to 64 codons is constructed, 61 of which make up the code itself (that is, they synthesize amino acids) and 3 mark start and stop positions in the sequence.

Following the order that this genetic structure determines, body cells can gather amino acids and synthesize specific proteins, which will fulfill certain functions in the body.

See also: Genetics

  1. Characteristics of the genetic code

The genetic code has a series of basic characteristics, which are:

  • Universality As we have said before, all living organisms share the genetic code, from viruses and bacteria to people, plants and animals. This means that a specific codon is associated with the same amino acid, regardless of which organism it is. 22 different genetic codes are known, which are variants of the standard genetic code in just one or two codons.
  • Specificity The code is extremely specific, that is, no codon encodes more than one amino acid, without overlapping, although in some cases there may be different start codons, which allow different proteins to be synthesized from the same code.
  • Continuity The code is continuous and has no interruptions of any kind, being a long chain of codons that is always transcribed in the same direction and direction, from the start to the stop codon.
  • Degeneration The genetic code has redundancies, but never ambiguities, that is, two codons can correspond to the same amino acid, but never the same codon to two different amino acids. Thus, there are more codons other than minimally necessary to store genetic information.
  1. Discovery of the genetic code

Nirenberg and Matthaei found that each coding encoded an amino acid.

The genetic code was discovered in the 1960s, after Anglo-Saxon scientists Rosalind Franklin (1920-1958), Francis Crick (1916-2004), James Watson ( 1928) and Maurice Wilkins (1916-2004) discovered the structure of DNA, beginning the genetic study of protein cell synthesis.

In 1955 scientists Severo Ochoa and Marianne Grunberg-Manago managed to isolate the polynucleotide phosphorase enzyme. They found that in the presence of any type of nucleotide, this protein constructed an mRNA or messenger composed of the same nitrogen base, that is, a polypeptide of a single nucleotide. . This shed light on the possible origin of both DNA and RNA.

The Russian-American George Gamow (1904-1968) proposed the genetic code model formed by combinations of the nitrogenous bases known today. However, Crick, Brenner and their collaborators demonstrated that the codons are composed of three nitrogen-only bases .

The first evidence of correspondence between the same code and an amino acid was obtained in 1961 thanks to Marshall Warren Nirenberg and Heinrich Matthaei.

Applying their methods, Nirenberg and Philip Leder were able to translate 54 of the remaining codons. Subsequently, Har Gobind Khorana completed the transcription of the code. Many of those involved in this race for deciphering the genetic code were awarded the Nobel Prize in Medicine.

  1. Function of the genetic code

In ribosomes, the codon sequence is translated into amino acid sequence.

The function of the genetic code is vital in the synthesis of proteins, that is, in the manufacture of the basic basic compounds for the existence of the Life as we understand it. Therefore, it is the fundamental pattern for the physiological construction of organisms, both of their tissues, and of their enzymes, substances and fluids.

For this, the genetic code operates as a template in the DNA, from which the RNA is synthesized, which is a kind of mirror image. Then in RNA the cellular organelles responsible for the construction of proteins (ribosomes) are displaced.

Synthesis begins in ribosomes according to the pattern that passed from DNA to RNA . Each gene is thus associated with an amino acid, building a chain of polypeptides. This is how the genetic code works.

  1. Origin of the genetic code

The origin of the genetic code is probably the greatest mystery of life. It is intuited, given that all known living beings are common, that their appearance on the planet was prior to that of the first living being, that is, the primitive cell that would give rise to All the kingdoms of life.

Initially, it was likely to be much less extensive and had barely the information to encode a few amino acids, but it would have grown in complexity as life emerged and evolved.

Continue with: nucleic acids

Interesting Articles



We explain what a page is and what it is used for. In addition, how much you measure a sheet and the most used sheet formats. A sheet measures approximately 14.8 centimeters by 21 centimeters. What is a page? When we deliver in writing a research paper, a thesis, an essay or a practical work, among others, we are likely to be asked for this to be of a certain extent



We explain what a network is and what are the types of network that exist. In addition, the different topologies and the elements that compose it. The networks have `` broadcasting processes '' and `` reception '' of messages. What is a network? In computer science, it is understood as a network (usually a computer network) to the interconnection of a certain number of computers (or computers)



We explain what computing is and what are its most important areas of study. In addition, history of computing, and evolution. Increasingly, computers are created faster and with better capabilities. What is computation? The concept of computing comes from the Latin computation , this refers to the computation, as account



We explain what the taiga is, also called the "boreal forest", its characteristics, climate, flora, fauna and various examples. The taiga is a forested biome with a cold climate, found in the northern hemisphere. What is the taiga? The taiga or boreal forest is one of the biomes in which the largest forest mass on the planet resides , composed almost entirely of coniferous forests



We explain what comedy is and what was the origin of this wonderful dramatic genre. In addition, the types of comedy that exist and examples. Comedies are characterized by evoking laughter and having a happy ending. What is comedy? It is called `` comedy '' one of the oldest dramatic genres, opposed in its theme to tragedy, that is, characterized by plots and narratives that evoke the laugh and have a happy ending



We explain to you what Mesopotamia is, its location, why it was important in Antiquity and the peoples that inhabited it. In Mesopotamia the first civilizations of history flourished. What is Mesopotamia? Mesopotamia is a region of West Asia located between the Tigris and Euphrates rivers, as well as its surrounding land